
Journal of Sound and Vibration (1998) 209(4), 699–706

WAVEGUIDES WITH PERIODIC UNDULATIONS INSPIRED BY DSP
WINDOWING

M. A. H

Seagate Technology, Advanced Platform Development Group, 5898 Condor Drive,
Moorpark, CA 93021, U.S.A.

(Received 26 July 1996, and in final form 5 August 1997)

1. 

This study is to investigate filter characteristics of periodic waveguides having non-uniform
periodicities. Such periodicities can be provided in the form of taper functions, similar in
nature to the window functions in the area of digital signal processing.

Previous works on acoustic wave propagation in ducts with periodic walls include the
works by Nayfeh [1, 2] who studied the interaction of two modes in a two-dimensional
hard-walled duct with sinusoidal walls, without and with mean flow. The interaction of
two as well as three modes in a cylindrical hard-walled duct having generally weak
undulations was considered by Nayfeh and Kandil [3]. A coupled-mode analysis of
acoustic waves in a rectangular duct with sinusoidal undulations was performed by Nusayr
[4]. An analysis of the banded structure of the dispersion spectrum of the modes of a
cylindrical hard-walled duct having a sinusoidally varying cross-section was done by
Bostrom [5]. The propagating of acoustic waves at the junction between a periodically
undulated section of a cylindrical duct and straight ducts was investigated by Lundqvist
and Bostrom [6]. The restriction of axial inversion symmetry and reciprocity on the allowed
Bloch wave solution in a periodic waveguide was investigated by Bradley [7]. Recently,
a design of single-mode as well as multi-mode acoustic silencers utilizing periodic
undulations was put forward by Hawwa et al. [8].

All of the above references concentrated on periodic undulations with uniform
amplitudes. There is a possibility, however, of employing tapered periodic undulations in
a similar fashion to using a suitable window (weighting) function for the design of an
enhanced digital filter.

In digital filter design, windows are utilized as weighting functions to smooth out the
sidelobe ripples and the overshoots (Gibbs phenomenon) in the original frequency
response. A response with low sidelobe levels is mainly desirable for two purposes: (1) the
convergence of Fourier series in the vicinity of discontinuities is improved for windowed
digital filters. (2) If the sidelobe level of the response is too high, the main lobe of a weak
signal may be obscured by the sidelobe from the strong signal. The first windows used for
these purposes were an ad hoc type such as those of Bartlett, Blackman, Hamming, and
Hanning. Another family of windows with adjustable parameters were then suggested such
as Kaiser’s window, for which the ratio of the main lobe energy to the sidelobe energy
is maximized. The choice of the window can play an important role in determining the
quality of the digital filter design. For a detailed treatment of the subject, the reader is
referred to the books by Rabiner and Gold [9] and Oppenheim and Schater [10].

In this paper, the design of wave filters using tapered undulations inspired by the DSP
window functions is presented. A circular cylindrical duct with a non-uniformly periodic
rigid wall is studied as a basic example. By assuming small-amplitude wall undulations,
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Figure 1. Waveguide with taper walls.

the perturbation method of multiple scales can be used to analyze the stopband interaction
of the propagating acoustic modes with the wall of the duct when the Bragg resonance
condition occurs. This leads to the coupled-mode equations with variable coefficients,
which are provided with relevant boundary conditions to constitute a two-point boundary
value problem. The missing boundary conditions are found numerically using the
fundamental matrix method. The filter response is calculated in terms of the reflection
coefficient.

2.  

The propagation of time-harmonic acoustic waves in the rigid circular cylindrical duct
shown in Figure 1 is considered. The radius of the duct varies in the region ẑ=[0, L]

T 1

Taper functions

Taper functions DSP window

T(Z1)=1− =((Z1 −L/2)/(L/2))= Bartlett
T(Z1)=0·42−0·5 cos (2pZ1/L)+0·08 cos (4pZ1/L) Blackman

T(Z1)=0·54−0·46 cos (2pZ1/L) Hamming
T(Z1)=0·5−0·5 cos (2pZ1/L) Hanning

T(Z1)= I0(b((L/2)2 − (Z1 −L/2)2)1/2/I0(L/2)) Kaiser
T(Z1)=1−((Z1 −L/2)/(L/2))2 Welsh

T(Z1)=1 Rectangular

T 2

Summary of results

Taper function Peak ripple (dB) Transition bandwidth (Hz)

Bartlett −32 75
Blackman −110 215
Hamming −72 120
Hanning −61 95
Kaiser (b=1) −33 45
Kaiser (b=2) −92 145
Kaiser (b=3) −146 280
Welsh −43 35
Rectangular −12 5
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Figure 2. Filter response (Bartlett taper function, dotted).

according to the distortion function

r̂(ẑ)= â[1+ oT(ẑ) sin k
 wẑ], (1)

where â is the average radius in the distorted region, which is also equal to the radius of
the uniform section of the duct; k
 w is the wavenumbers of the wall undulation, o�1 is a
dimensionless parameter equal to the ratio of the amplitude of the wall undulation to â,
and T(ẑ) is a slowly varying taper function, which acts as weighting function. When
T(ẑ)=1, the problem reduces to that of a duct with uniform undulations.

In order to perform a perturbation analysis, the problem using â as a spatial reference
quantity is normalized. Then, the governing equation of acoustic waves in the duct is given
by

$01r 1

1r 0r 1

1r1+
1
r2

12

1u2 +
12

1z21+ k2%p=0, (2)

Figure 3. Filter response (Blackman taper function, dotted).
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Figure 4. Filter response (Hamming taper function, dotted).

where p is the acoustic pressure inside the duct, k=vâ/c is the nondimensional free
acoustic wavenumber, where v is the circular frequency and c is the speed of sound.

The governing equation is subject to the boundary condition of vanishing velocity
component normal to the duct wall, hence

9p ( n=
1p
1r

nr +
1p
1z

nz =0, at r=1+ oT(z) sin kwz; (3)

nr and nz are the r− and z− components of the local outward-pointing unit normal,
respectively.

The system of equations (2) and (3) will be solved when the following resonance
condition is satisfied:

2kn 1 kw . (4)

Under this condition, a solution in the form of a straightforward first order asymptotic
expansion is found to break down. It is known in the literature as Bragg resonance, which
indicates that the incident and the reflected nth modes are coupled by the periodic

Figure 5. Filter response (Hanning taper function, dotted).
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Figure 6. Filter response (Kaiser taper function); b=1, dotted; b=2, dashed; b=3; solid.

undulation. To quantitatively evaluate the nearness to resonance, a detuning parameter
s=O(1) is used as a measure such that

2kn + os= kw . (5)

In the next section a uniform solution, valid around the resonance condition, is obtained
using the method of multiple scales [11].

3.   

Using the method of multiple scales, one seeks a first order asymptotic expansion for
p in powers of o in the form

p(r, z)= p0(r, Z0, Z1)+ op1(r, Z0, Z1)+ · · · , (6)

where Z0 = z is a short scale of the order of the wavelength in the duct and Z1 = oz is a
long scale characterizing the amplitude and phase modulations due to the wall undulation.

Figure 7. Filter response (Welsh taper function, dotted).
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Using the chain rule, one can write the derivatives with respect to z in terms of Z0 and
Z1 as

1

1z
=

1

1Z0
+ o 1

1Z1
+ · · · ,

12

1z2 =
12

1Z2
0
+2o 12

1Z0 1Z1
+ · · · . (7, 8)

Substituting equations (6–8) into equations (2) and (3), expanding p at
r=1+ oT(Z1) sin kwZ0 in a Taylor series around r=1, and equating coefficients of equal
powers of o on both sides, one obtains for the zeroth order problem,

$01r 1

1r 0r 1

1r1+
1
r2

12

1u2 +
12

1Z2
01+ k2%p0 =0, (9)

1p0/1r=0, at r=1, (10)

and for the first order problem,

$01r 1

1r 0r 1

1r1+
1
r2

12

1u2 +
12

1Z2
01+ k2%p1 =−2

12p0

1Z0 1Z1
, (11)

1p1

1r
=−T(Z1)$sin kwZ0

12p0

1r2 − kw cos kwZ0
1p0

1Z0%, at r=1. (12)

One seeks a solution of equations (9) and (10) in the form of a linear combination of
incident and reflected modes,

p0 = s
m,n

Jm (gmnr)[A+
n (Z1) ei(knZ0 +mu) +A−

n (Z1) e−i(knZ0 −mu)], (13)

where the superscript + and − indicate incident and reflected modes, respectively. The
axial wavenumber k2

n = k2 − g2
mn , where gmn is a solution of the dispersion relation of the

duct modes, J'm (gmn )=0. The amplitudes A3
n will be determined from the solvability

condition at the next level of approximation. In order to determine this condition, one
seeks a particular solution for p1 in the form

p1 = s
m,n

[B+
n (r) ei(knZ0 +mu) +B−

n (r) e−i(knZ0 −mu)]. (14)

By substituting equations (13) and (14) into the first order problem (11) and (12), and
equating the coefficients of exp(3iknZ0) on both sides, one obtains

$1r 1

1r 0r 1

1r1+0g2
mn −

m2

r2 1%B3
n =22ikn

1A3
n

1Z1
Jm (gmnr), (15)

1B3
n

1r
(1)=3

i
2

T(Z1)[g2
mnJ0m (gmn )− kwknJm (gmn )]A2

n e2isZ1. (16)

Since the homogeneous first order problem has a non-trivial solution, the
inhomogeneous first order problem has a solution if, and only if, a solvability condition
is satisfied [13]. To determine this condition, one multiplies equation (15) by rJ1(gmnr) and
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integrates by parts from r=0 to r=1, and invoke equation (5). This leads to the
coupled-mode equations

d
dZ1 6A+

n

A−
n 7=$ 0

T(Z1)Cmn eisZ1

T(Z1)Cmn e−isZ1

0 %6A+
n

A−
n 7, (17)

where

Cmn =
−1
kn 0 g2

mn

g2
mn −m21$g2

mn
J0m (gmn )
Jm (gmn )

− kwkn%.
The coupled mode equations (17) form a first order ordinary differential equations with

variable coefficients. Without loss of generality, end conditions at Z1 =0 and Z1 = l are
assumed to be

A+
n (0)=1, A−

n (l)=0, (18)

where the first condition represents an excitation amplitude of the incident mode, and the
second condition indicates an anechoic termination at Z1:a.

In order to calculate the filter response of the duct, the two-point boundary value
problem defined by equations (17) and (18) is solved numerically by employing the
fundamental matrix method [12].

Before presenting numerical examples, the range of validity of the multiple-scales first
order approximation is investigated. This can be done by extending the multiple-scale
solution to second order in o and neglecting the self interaction term. The same conclusion
could be reached, however, if one specifies a threshold on the values of the detuning
parameter, s, since it is a measure of the nearness to resonance. If equation (5) is rewritten
in the form 1= kw /2kn − o(s/2kn ), one realizes that the quantity s/2kn should be of the
order of unity. Hence, an upper limit may be put on s as: −2kn ( O(1)Q sQ 2kn ( O(1).
By letting =s/2k=Q 5, for example, the range of validity of the first order perturbation
expansion is such that −10kQ sQ 10k. Hence, values of s should be within this range.

4.  

One takes a circular cylindrical duct with â=0·1 m as an example. Assume that the duct
contains ambient air, in which c=343 m/s. From the dispersion relation, one can show
that at a frequency of 500 Hz only the plane wave can propagate and other modes are
evanescent. In order to eliminate the propagating wave at 500 Hz, periodic wall
undulations are designed having a wavenumber that is equal to twice the wavenumber kn

at this frequency, i.e., kw =2×0·916, which corresponds to a wavelength l=0·343 m. The
amplitude-related parameter, o, and the length of the periodic section, l, are chosen to be
0·1 and 10l, respectively.

Six types of taper functions are applied to the above described wall undulations. They
are tabulated with the corresponding DSP windows as shown in Table 1. Note that the
case of a uniformly undulated duct is obtained as a special case in the present analysis
by letting T(Z1)=1. This corresponds to a window of the rectangular type.

The filter responses of the tapered silencers are depicted in Figures 2–7 and are compared
to that of the uniformly undulated one. All of the taper functions are noticed to have the
same effects, with different degrees of influence. These are: (1) realizing larger stopband
width, (2) minimizing the area under passband sidelobes, (3) increasing transition
bandwidth.
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Table 2 summarizes the results in the figures. It presents the amplitude of the peak ripple
appearing adjacent to the main lobe, and the transition bandwidth between the stopband
corner frequency and the passband corner frequency. To present a qualitative comparison,
one can report the following points:

(1) The Blackman window has a slightly wider stopband and less sideband leakage than
the Hamming and Hanning windows.

(2) The heights of the sidelobes of the Hanning window fall off more rapidly than do
those of the Hamming window. Also for both of these windows the main lobes are four
times as wide as the sidelobes, excepting the split sidelobes nearest the main lobe.

(3) The Blackman window also decreases the sidelobes level, and increases the width
of the stopband.

(4) For the Kaiser window, the parameter b controls the sidelobe height [13]. As b

increases, the sidelobe height decreases and the main lobe width increases.

5. 

The characteristics of an acoustic filter based on the stopband interaction of acoustic
waves in periodically undulated ducts have been presented. Applying different types of
taper functions to the wall undulations was found to improve the design by widening the
stopband and suppressing the passband ripples. The choice of taper functions was inspired
by the concept of windowing in the field of digital signal processing. The filter responses
obtained in this paper were found surprisingly similar to the filter responses of windowed
DSP filters having corresponding window functions as the taper functions applied to the
undulations. The thesis of this work is to report that the factors used to realize a better
filter response of DSP filters can be utilized as a lead in shaping the desired filter response
of periodic physical filters.
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